|
小学数学教师的16条“知识性诘问”及解析
本文转载自兰草《小学数学教师的16条“知识性诘问”及解析》
摘要:随着课程改革的不断深入,新课程理念已为越来越多的一线数学教师所接受。众多的专家学者纷纷著书立说,或从宏观的理论层面,亦或从中观的操作层面,为老师们实践新课程指明了努力的方向。但面对处于微观知识层面的一些现实性“诘问”,诸如“最小的一位数是0还是1?”、“为什么0也是自然数?”、“最大的分数单位是多少?”、“计算出勤率可不可以不乘100%?”……等等,却鲜有学者做出权威系统的说明。而这些看似“细节”的问题,却是彰显数学教学“科学性”“严谨性”不可或缺的一环,处理不好可能直接影响到教学评估和考试命题。于此,笔者结合十余年一线教学的实际,特收录了困扰小学数学教师的16条“知识性诘问”,试作粗浅解析。
关键词:小学数学 ;知识性诘问;解析
1 最小的一位数是0还是1?
这个问题在很长一段时间存在争论。
先来看看《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”的叙述:“通常在自然数里,含有几个数位的数,叫做几位数。例如“2”是含有一个数位的数,叫做一位数;“30”是含有两个数位的数,叫做两位数;“405”是含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。
再来听听专家的说明:在自然数的理论中,对“几位数”是这样定义的,“只用一个有效数字表示的数,叫做一位数;只用两个数字(其中左边第一个数字为有效数字)表示的数,叫做两位数……所以,在一个数中,数字的个数是几(其中最左边第一个数字为有效数字),这个数就叫几位数。
于此,所谓最大的几位数,最小的几位数,通常是在非零自然数的范围研究。所以一位数共有九个,即:1、2、3、4、5、6、7、8、9。
0不是最小的一位数。
2 为什么0也是自然数?
课标教材对“0也是自然数”的规定,颠覆了人们对自然数的传统认识。
于此,中央教科所教材编写组主编陈昌铸如是说:国际上对自然数的定义一直都有不同的说法,以法国为代表的多数国家都认为自然数从0开始,我国教材以前一直都是遵循前苏联的说法,认为0不是自然数。2000年教育部主持召开教材改编会议时,已明确提出将0归为自然数。这次改版也是与国际惯例接轨。
从教学实践层面来说,将“0”规定为“自然数”也有着积极的现实意义。
2.1“0”作为自然数的“好处”。
众所周知,数学中的集合被分为有限集合和无限集合两类。有限集合是含有有限个元素的集合,像某班学生的集合。无限集合是含有的元素个数是非有限的集合,如分数的集合。因为自然数具有“基数”的性质,因此用自然数来描述有限集合中元素的个数是很自然的。
但在有限集合中,有一个最主要也是最基本的集合,叫空集{},元素个数为0。如果不把0作为自然数,那么空集的元素的个数就无法用自然数来表示了。如果把“0”作为一个自然数,那么自然数就可以完成刻画“有限集合元素个数”的任务了。于此,从“自然数的基数性”这个角度,我们看到了把“0”作为自然数的好处。
2.2把“0”作为自然数,不会影响自然数的 “运算功能”。
“0”加入传统的自然数集合,所有的“运算规则”依旧保持,如新自然数集合{0,1,2,…,n,…}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。
所以,“0”加盟到自然数集合实属理所当然,而不仅仅是人为的“规定”。它让我们更好地理解自然数和它的功能,同时也让我们意识到教学时不仅要知道和记住数学的“定义”和“规定”,还应该思考“规定”背后的数学涵义。
3 什么是有效数字一无效数字?
有效数字是对一个数的近似值的精确程度而提出的。同一个近似数如果在取舍时,保留的有效数字多,就比保留的有效数字少更精确。一般说,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。这时,从左边第一个非零的数字起,到那一位上的所有数字都叫做这个数的有效数字。如近似数0.00309有三个有效数字:3、0、9;0.520也有三个有效数字:5、2、0。而0.00309中左边的三个零,0.520中左边的一个零,都叫做无效数字。
4 加法与减法、乘法与除法是否互为逆运算?
“加法与减法互为逆运算、乘法与除法互为逆运算”这似乎成了许多老师的口头禅,这其实是一种误解。例如:
加法“2+3=5”,其逆算为“5-2=3”,“5-3=2”。故此,加法的逆运算只有减法;
减法“5-2=3”, 其逆算有 “5-3=2”, “2+3=5”。故此,减法的逆运算有减法和加法两种运算。
综上可知,只能说减法是加法的逆运算,而不能说加法与减法互为逆运算。
同理,也只能说除法是乘法的逆运算,而不能说乘法与除法互为逆运算。
5 为什么不写“倍”?
在学习“求一个数是另一个数的几倍”应用题时,很多小朋友会自然提出这样的疑问,如:“饲养小组养了12只小鸡,3只小鸭,小鸡的只数是小鸭的几倍?”为什么“12÷3=4”的后面不写“倍”呢?
我们首先应该肯定学生的质疑(学生有较强的解题规范意识)。但同时又该对学生说明:在解答应用题时,得数后面一般要写上的是数的单位名称。如:12只的“只”;8克的“克”。一个数只有带上单位名称,才能准确地表示出一个物体的多少、大小、长短、轻重等等。但是,“倍”不是单位名称,它表示两个数量之间的一种关系。例如,上面的计算结果“4”,表示12里面有4个3,就是12只小鸡是3只小鸭的4倍。所以,在算式里不写“倍”,以免“倍”与单位名称发生混淆。
6 “倍”和“倍数”的区别
在第一学段我们学习了“倍的初步认识”,认识了概念“倍”,而在第二学段,我们又学习到“倍数”这个概念。那么,“倍”和“倍数”这两个词到底是不是一回事呢?这两个词之间有什么区别呢?
“倍”指的是数量关系,它建立在乘除法概念的基础上。例如:男生有10人,女生有30人,因为“10×3=30”或者“30÷10=3”,我们就说,女生人数(30)是男生人数(10)的3倍,也可以说,男生人数(10)的3倍等于女生人数(30)。勿宁说,“倍”其实表示的是两个数的商(这个商可以是整数、小数、分数等各种表现形式)。
“倍数”指的是数与数之间的联系,它建立在整除概念的基础上。例如,30能被6整除,30就是6的倍数。可见,“倍数”是不能独立存在的(具有特定的指向性),而且对数的形式有特别的要求(必须为整数)。
同时我们又看到,30也是6的5倍,因为6×5=30,“6×5”表示6的5倍。所以从这个角度来说,“倍”的涵义应宽泛于“倍数”,后者可以视为前者在特定情形下的一种表现。
7 “时”和“小时”有什么不同?怎样使用“时”和“小时”?
首先应该明确的是,〔小〕时并非国际时间单位。在1984年国务院发布的《关于我国统一法定计量单位的命令》中,把秒作为时间的基本单位,把非国际单位制的时间单位天(日)、〔小〕时、分作为辅助单位。(注:〔〕里的字,在不致混淆的情况下,可以省略)。这样,在我国范围内使用的法定时间单位就有:天(日)、〔小〕时、分、秒。
由此,“时”既可以表示时间,又可以表示时刻。由于“时间”和“时刻”这两个不同的概念容易产生混淆,在实际应用时间单位“时”时,现行教材作了如下处理:
7.1当列式计算出时间的长短时,在得数的括号里写上时间的单位“时”。例如:
超市营业时间:21-9=12(时)。(此处可省略“小”字)
7.2在用语言表述时间的长短时,为避免“时间”和“时刻”这两个概念产生混淆,则在“时”的前面加上一个“小”字。例如:
超市营业时间12小时。
7.3在用语言表示时刻时,一律不得出现“小时”字样。例如:
公园每天早上7时30分开园(而非7小时30分)。
8 “改写”和“省略”是一样的吗?
先来看的教材例题截图(人教版小学数学第七册22页)。
从形式上看,此例将“改写”与“省略”两种对数的变化置于了同一个要求之下(即改写成用“亿”作单位的数)。我们真希望编者不是有意而为之,因为“改写”与“省略”其本质是完全不同的。表现在:
8.1目的不同。“改写”的目的是方便对大数的读写,而“省略”则是取数的近似值。
8.2方法不同。此处的“改写”是去掉“亿”位后面的0,再写上一个“亿”字,而“省略”除了要找准“亿”位,还要考虑被省略的尾数的最高位是几,然后用四舍五入法求出近似数。
8.3符号不同。“改写”只改变了数的表现形式,大小并未改变,所以用“=”号连接;而“省略”既改变了数的形式,又改变的数的大小,所以用“≈”连接。
9 “路程”就是“距离”吗?
这两个词在许多老师的教学语言中是替代使用的,其实不然。
“路程”是指从一个地点到另一个地点所经过路线的长度;而“距离”则指连接两个地点而成的直线段的长度。如下图:
可以看到,“路程”所经过的路线可以是曲形线,也可以是直形线,还可能是折形线。一般情况下,两个地点之间的“路程”要大于它们之间的“距离”,只有当两个地点之间的路线为直线时,路程和距离才相等。
虽然老师们都知道这个等式是成立的,但我们的学生却没有相应的知识储备,怎样绕开”极限”寻找能为小学生所理解和接受的证明途径,我想至少可以考虑几下几种方法:
11 最大的分数单位是1/2还是1/1?
先看看分数单位的含义:把单位“1”平均分成若干份,表示这样一份的数。
显然,在分数意义中,关键是“分”,没有“分”,就没有“份”。因为把单位“1”平均分成的最少份数是2份(如果是1份,也就无所谓“分”),由此得到的分数单位是1/2,所以1/2是最大的分数单位。
尽管就广义的分数来说,1/1也可视作分数,但它已不是我们通常意义上认识的与整数对立的那种分数(在平均分的基础上所产生),故此,最大的分数单位应以1/2为宜。
12 像 0/3、0.2/3、3/0.2这样的数是不是分数?
分数的定义明确告诉我们:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。其中,分成的份数叫做分数的分母,要表示的份数叫做分子。由此可知,分数的分子和分母都应该是非零自然数。从这个意义来说,以上这几个数徒具分数的形式,而不具分数的实质,因此都不应该视为分数。
进而,在考查学生对“分数”涵义的理解时,应着眼于通常意义上的分数,将上述这些变异形式纳入思考的范围,其本身对训练学生的思维并无多大实际意义,而且会令诸如“分数都大于0”等命题的真与假陷入尴尬。
13 比6多1/2的数”应该是“6+1/2”还是“6+(1+1/2)”?
要弄清这个问题,先得弄清“6”的性质。显然,此处的“6”其实质是一个“数”,而非一个“量”,求“比6多1/2的数”应属于“求比一个数多几的数”的范畴,问题中的“多几”都是确定的具体数,这里的“几”既可以是整数,也可以是小数或分数。所以,这里的“1/2”是指在6的基础上“多1/2”这个“1/2”数的本身,而非“6的1/2”。所以,“比6多1/2的数”应该是“6+1/2”。可以使计算数值大小不变,又能保证结果形式满足百分数的要求。因此,计算出勤率、发芽率、出粉率、合格率……的公式中,都应乘“100%”。同时建议各版本教材的编委统一思想,以免给一线教师造成认识上的混乱。
15 小于90度的角都是锐角吗?
根据课标教材定义:小于90度的角叫做锐角。答案似乎是肯定的,但由此又产生一个新的问题:0度的角是什么角,也是锐角吗?
事实是,锐角定义有一个隐含的前提,就是小学数学中所讨论的角都是正角。习惯上,我们把射线按逆时针方向旋转而得到的角叫做正角,射线按顺时针方向旋转而得到的角叫做负角,当一条射线没有做任何旋转时,就把它看成零角。如果将角的概念推广到任意大小的角,就应分为正角、负角、和零角。
由此,严格意义上的锐角定义应是:大于0度而小于90度的角叫做锐角。(建议教材作出修改)
16 足球比赛记分牌上的“3︰2”是数学中的“比”吗?
我们至少可以从两个方面来理解它们的差别。
第一, 球类比赛中的“3︰2”表示的是
当然,如果题目确定为“比6多它的1/2的数”,那答案则属于后者。
14 计算出勤率可不可以不乘100%?
先来看看新人教版、北师大版和苏教版三个不同版本的教材对类似问题的理解。(截图为相关例题的解答部分)
同一课程标准下,不同的教材给出了不同的理解,这给执教者带来了困惑:到底可不可以不乘100%呢?笔者以为,求“××率”其结果必定为百分率。以出勤率为例,就是求实际出勤人数占应出勤人数的百分之几。如果公式只写成:出勤率=实际出勤人数/应出勤人数,我们说这只是分数形式(也即是求实际出勤人数占应出勤人数的“几分之几”),并不是百分数。因此,在公式后面乘上“100%”,既能遇到许多知识性“诘问”。因此,如何尽最大努力减少“诘问”数量,以保证数学教学的科学性就值得我们思考。
17.1修改完善新教材与教师教学用书
教材与教师用书是广大教师实施新课程所依据的主要文本资源,也是实现课改总体目标的重要保证。于此,被教师们视为“圣经”的教材与教师用书本身应该是高质量的。然而,正如前述第5、第14、第15三问论及的一样,教材本身存有瑕疵,应在细节上进一步加以推敲。
其次,建议各册教师教学用书对本册内容的知识性疑难及背景资料进行相应的收集、整理,并单列板块形成资料库,增强教师用书的指导功能。
比赛双方的得分情况,是“差”比,即表示相差关系,一方得3分,另一方得2分,双方相差1分;数学中的“3︰2”表示的是“3÷2”,是“倍”比,商为1.5。有鉴于此,球类比赛中的“比”(其实是比分),其后数可以为0的,而数学中的“比”,其后数(相当于除数)是不可以为0的。
第二, 数学中的“比”是可以化简的,如“4︰2=2︰1”;同样的“4︰2”放在球类比赛中,却不可以化简,如果化简就不能反映双方在比赛中的实际得分了。
17 思考与建议
通过以上问题的分析,老师们在实施新课程的过程中,的确可
17.2加强知识理解,提高教师学科素养
“有效的教学依赖于教师对所教内容的深层含义是否有坚实的理解,良好的教材、软件、教师用书都不能代替高资质的教师。”数学教学的“四基”是否扎实,一个关键的因素便是“教师对数学知识的深刻理解”,文前论及的许多“诘问”其实都和这一点有关。如何加强在职教师对学科知识的理解,进而提升学科素养,既要有政策层面的宏观考量,又要有教师个体的微观反思。
〔参考文献〕 |
|